
Further Programming Aspects
This section covers the following topics:

End of Program - The END Statement
End of Application - The STOP Statement
Conditional Processing - The IF Statement
Loop Processing
Control Breaks
Data Computation
System Variables and System Functions
Stack
Processing of Date Information

End of Program - The END Statement
The END statement is used to mark the end of a Natural program, subprogram, external subroutine or helproutine.

Every one of these objects must contain an END statement as the last statement.

Every object may contain only one END statement.

End of Application - The STOP Statement
The STOP statement is used to terminate the execution of a Natural application. A STOP statement executed
anywhere within an application immediately stops the execution of the entire application.

Conditional Processing - The IF Statement
With the IF statement, you define a logical condition, and the execution of the statement attached to the IF statement
then depends on that condition.

The IF statement contains three components: IF, THEN, and ELSE.

In the IF clause, you specify the logical condition which is to be met.
In the THEN clause you specify the statement(s) to be executed if this condition is met.
In the (optional) ELSE clause, you can specify the statement(s) to be executed if this condition is not met.

So, an IF statement takes the following general form:

 IF condition
 THEN execute statement(s)
 ELSE execute other statement(s)
 END-IF

If you wish a certain processing to be performed only if the IF condition is not met, you can specify the clause
THEN IGNORE, which means that the IF condition will be ignored if it is met.

For more information on logical conditions, see General Information of the Natural Reference documentation.

Example of IF Statement:

1Copyright Software AG 2002

Further Programming AspectsFurther Programming Aspects

 ** Example Program ’IFX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 BIRTH
 2 CITY
 2 SALARY (1:1)
 END-DEFINE
 *
 LIMIT 7
 READ MYVIEW BY CITY STARTING FROM ’C’
 IF SALARY (1) LT 40000 THEN
 WRITE NOTITLE ’*****’ NAME 30X ’SALARY LT 40000’
 ELSE
 DISPLAY NAME BIRTH (EM=YYYY-MM-DD) SALARY (1)
 END-IF
 END-READ
 END

The IF statement block in the above program causes the following conditional processing to be performed:

IF the salary is less than 40000, THEN the WRITE statement is to be executed;
otherwise (ELSE), that is, if the salary is 40000 or more, the DISPLAY statement is to be executed.

The program produces the following output:

 NAME DATE ANNUAL
 OF SALARY
 BIRTH
 -------------------- ---------- ----------

 ***** KEEN SALARY LT 40000
 ***** FORRESTER SALARY LT 40000
 ***** JONES SALARY LT 40000
 ***** MELKANOFF SALARY LT 40000
 DAVENPORT 1948-12-25 42000
 GEORGES 1949-10-26 182800
 ***** FULLERTON SALARY LT 40000

Copyright Software AG 20022

Further Programming AspectsConditional Processing - The IF Statement

Nested IF Statements

It is possible to use various nested IF statements; for example, you can make the execution of a THEN clause
dependent on another IF statement which you specify in the THEN clause.

Example of Nested IF Statements:

 ** Example Program ’IFX02’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 CITY
 2 SALARY (1:1)
 2 BIRTH
 2 PERSONNEL-ID
 1 MYVIEW2 VIEW OF VEHICLES
 2 PERSONNEL-ID
 2 MAKE
 1 #BIRTH (D)
 END-DEFINE
 *
 MOVE EDITED ’19450101’ TO #BIRTH (EN=YYYYMMDD)
 *
 LIMIT 20
 FND1. FIND MYVIEW WITH CITY = ’BOSTON’
 SORTED BY NAME
 IF SALARY (1) LESS THAN 20000
 THEN WRITE NOTITLE ’*****’ NAME 30X ’SALARY LT 20000’
 ELSE
 IF BIRTH GT #BIRTH
 FIND MYVIEW2 WITH PERSONNEL-ID = PERSONNEL-ID (FND1.)
 DISPLAY (IS=ON) NAME BIRTH (EM=YYYY-MM-DD)
 SALARY (1) MAKE (AL=8 IS=OFF)
 END-FIND
 END-IF
 END-IF
 SKIP 1
 END-FIND
 END

The above program with nested IF statements produces the following output:

 NAME DATE ANNUAL MAKE
 OF SALARY
 BIRTH
 -------------------- ---------- ---------- --------

 ***** COHEN SALARY LT 20000

 CREMER 1972-12-14 20000 FORD

 ***** FLEMING SALARY LT 20000

 ***** GREENACRE SALARY LT 20000

 PERREAULT 1950-05-12 30500 CHRYSLER

 ***** SHAW SALARY LT 20000

 STANWOOD 1946-09-08 31000 CHRYSLER
 FORD

3Copyright Software AG 2002

Nested IF StatementsFurther Programming Aspects

Further Example of IF Statement:

See program IFX03 in library SYSEXPG.

Copyright Software AG 20024

Further Programming AspectsNested IF Statements

Loop Processing
A processing loop is a group of statements which are executed repeatedly until a stated condition has been satisfied,
or as long as a certain condition prevails.

Processing loops can be subdivided into database loops and non-database loops:

Database processing loops are those created automatically by Natural to process data selected from a database
as a result of a READ, FIND or HISTOGRAM statement. These statements are described in the section
Database Access.
Non-database processing loops are initiated by the statements REPEAT, FOR, CALL FILE, CALL LOOP,
SORT, and READ WORK FILE.

More than one processing loop may be active at the same time. Loops may be embedded or nested within other loops
which remain active (open).

A processing loop must be explicitly closed with a corresponding END-... statement (for example, END-REPEAT,
END-FOR, etc.)

The SORT statement, which invokes the sort program of the operating system, closes all active processing loops and
initiates a new processing loop.

The following topics are covered below:

Limiting Database Loops
Limiting Non-Database Loops - The REPEAT Statement
Terminating a Processing Loop - The ESCAPE Statement
Loops Within Loops
Referencing Statements within a Program

Limiting Database Loops

With the statements READ, FIND, or HISTOGRAM, you have three ways of limiting the number of repetitions of
the processing loops initiated with these statements:

with the session parameter LT,
with a LIMIT statement,
or with a limit notation in a READ/FIND/HISTOGRAM statement itself.

LT Session Parameter

With the system command GLOBALS, you can specify the session parameter LT, which limits the number of
records which may be read in a database processing loop.

Example:

GLOBALS LT=100

This limit applies to all READ, FIND and HISTOGRAM statements in the entire session.

5Copyright Software AG 2002

Loop ProcessingFurther Programming Aspects

LIMIT Statement

In a program, you can use the LIMIT statement to limit the number of records which may be read in a database
processing loop.

Example:

LIMIT 100

The LIMIT statement applies to the remainder of the program unless it is overridden by another LIMIT statement or
limit notation.

Limit Notation

With a READ, FIND or HISTOGRAM statement itself, you can specify the number of records to be read in
parentheses immediately after the statement name.

Example:

READ (10) VIEWXYZ BY NAME

This limit notation overrides any other limit in effect, but applies only for the statement in which it is specified.

If the limit set with the LT parameter is smaller than a limit specified with a LIMIT statement or a limit notation, the
LT limit has priority over any of these other limits.

Limiting Non-Database Loops - The REPEAT Statement

Non-database processing loops begin and end based on logical condition criteria or some other specified limiting
condition.

The REPEAT statement is discussed here as representative of a non-database loop statement.

With the REPEAT statement, you specify one or more statements which are to be executed repeatedly. Moreover,
you can specify a logical condition, so that the statements are only executed either until or as long as that condition is
met. For this purpose you use an UNTIL or WHILE clause:

If you specify the logical condition in an UNTIL clause, the REPEAT loop will continue until the logical
condition is met.
If you specify the logical condition in a WHILE clause, the REPEAT loop will continue as long as the logical
condition remains true.

If you specify no logical condition, the REPEAT loop must be exited with an ESCAPE, STOP or TERMINATE
statement:

An ESCAPE statement (see next section) terminates the execution of the processing loop and continues
processing outside the loop.
A STOP statement stops the execution of the entire Natural application.
A TERMINATE statement stops the execution of the Natural application and also ends the Natural session.

Copyright Software AG 20026

Further Programming AspectsLimiting Non-Database Loops - The REPEAT Statement

Example of REPEAT Statement:

 ** Example Program ’REPEAX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 SALARY (1:1)
 1 #PAY1 (N8)
 END-DEFINE
 *
 READ (5) MYVIEW BY NAME WHERE SALARY (1) = 30000 THRU 39999
 MOVE SALARY (1) TO #PAY1
 REPEAT WHILE #PAY1 LT 40000
 MULTIPLY #PAY1 BY 1.1
 DISPLAY NAME (IS=ON) SALARY (1)(IS=ON) #PAY1
 END-REPEAT
 SKIP 1
 END-READ
 END

The above program produces the following output:

Page 1 97-08-19 18:42:53

 NAME ANNUAL #PAY1
 SALARY
 -------------------- ---------- ---------

 ADKINSON 34500 37950
 41745

 33500 36850
 40535

 36000 39600
 43560

 AFANASSIEV 37000 40700

 ALEXANDER 34500 37950
 41745

7Copyright Software AG 2002

Limiting Non-Database Loops - The REPEAT StatementFurther Programming Aspects

Terminating a Processing Loop - The ESCAPE Statement

The ESCAPE statement is used to terminate the execution of a processing loop based on a logical condition.

You can place an ESCAPE statement within loops in conditional IF statement groups, in break processing statement
groups (AT END OF DATA, AT END OF PAGE, AT BREAK), or as a stand-alone statement implementing the
basic logical conditions of a non-database loop.

The ESCAPE statement offers the options TOP and bottom, which determine where processing is to continue after
the processing loop has been left via the ESCAPE statement:

ESCAPE TOP is used to continue processing at the top of the processing loop.
ESCAPE bottom is used to continue processing with the first statement following the processing loop.

You can specify several ESCAPE statements within the same processing loop.

For further details and examples of the ESCAPE statement, see the Natural Statements documentation.

Loops Within Loops

A database statement can be placed within a database processing loop initiated by another database statement. When
database loop-initiating statements are embedded in this way, a "hierarchy" of loops is created, each of which is
processed for each record which meets the selection criteria.

Multiple levels of loops can be embedded. For example, non-database loops can be nested one inside the other.
Database loops can be nested inside non-database loops. Database and non-database loops can be nested within
conditional statement groups.

Example of Nested FIND Statements:

The following program illustrates a hierarchy of two loops, with one FIND loop nested or embedded within another
FIND loop.

 ** Example Program ’FINDX06’
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 CITY
 2 NAME
 2 PERSONNEL-ID
 1 VEH-VIEW VIEW OF VEHICLES
 2 MAKE
 2 PERSONNEL-ID
 END-DEFINE
 *
 FND1. FIND EMPLOY-VIEW WITH CITY = ’NEW YORK’ OR = ’BEVERLEY HILLS’
 FIND (1) VEH-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (FND1.)
 DISPLAY NOTITLE NAME CITY MAKE
 END-FIND
 END-FIND
 END

The above program selects data from multiple files. The outer FIND loop selects from the EMPLOYEES file all
persons who live in New York or Beverley Hills. For each record selected in the outer loop, the inner FIND loop is
entered, selecting the car data of those persons from the VEHICLES file. The program produces the following
output:

Copyright Software AG 20028

Further Programming AspectsTerminating a Processing Loop - The ESCAPE Statement

 NAME CITY MAKE
 -------------------- -------------------- --------------------

 RUBIN NEW YORK FORD
 OLLE BEVERLEY HILLS GENERAL MOTORS
 ADKINSON BEVERLEY HILLS FORD
 WALLACE NEW YORK MAZDA
 SPEISER BEVERLEY HILLS FORD

9Copyright Software AG 2002

Loops Within LoopsFurther Programming Aspects

Referencing Statements within a Program

Statement reference notation is used to refer to previous statements in a program in order to specify processing over
a particular range of data, to override Natural’s default referencing (as described for each statement in the Natural
Statements documentation, where applicable), or for documentation purposes.

Any Natural statement which causes a processing loop to be initiated and/or causes data elements in a database to be
accessed (for example, READ, FIND, HISTOGRAM, SORT, REPEAT, FOR) can be referenced.

When multiple processing loops are used in a program, reference notation is used to uniquely identify the particular
database field to be processed by referring back to the statement that originally accessed that field in the database. (If
a field can be referenced in such a way, this is indicated in the "Reference Permitted" column of the "Operand
Definition Table" in the statement description in the Natural Statements documentation.)

In addition, reference notation can be specified in some statements; for example, AT START OF DATA, AT END
OF DATA, AT BREAK and ESCAPE bottom. Without reference notation, an AT START OF DATA, AT END OF
DATA or AT BREAK statement will be related to the outermost active READ, FIND, HISTOGRAM, SORT or
READ WORK FILE loop. With reference notation, you can relate it to another active processing loop.

If reference notation is specified with an ESCAPE bottom statement, processing will continue with the first
statement following the processing loop identified by the reference notation.

Statement reference notation may be specified in the form of a statement label or a source-code line number.

A statement label consists of several characters, the last of which must be a period (.). The period serves to identify
the entry as a label.

A statement that is to be referenced is marked with a label by placing the label at the beginning of the line that
contains the statement. For example:

 0030 ...
 0040 READ1. READ VIEWXYZ BY NAME
 0050 ...

In the statement that references the marked statement, the label is placed in parentheses at the location indicated in
the statement’s syntax diagram (as described in the Natural Statements documentation). For example:

 AT BREAK (READ1.) OF NAME

If source-code line numbers are used for referencing, they must be specified as 4-digit numbers (leading zeros must
not be omitted) and in parentheses. For example:

 AT BREAK (0040) OF NAME

Copyright Software AG 200210

Further Programming AspectsReferencing Statements within a Program

In a statement where the label/line number relates a particular field to a previous statement, the label/line number is
placed in parentheses after the field name. For example:

 DISPLAY NAME (READ1.) JOB-TITLE (READ1.) MAKE MODEL

Line numbers and labels can be used interchangeably.

Example with Line Numbers:

The following program uses line numbers for referencing. In this particular example, the line numbers refer to the
statements that would be referenced in any case by default.

 0010 ** Example Program ’LABELX01’
 0020 DEFINE DATA LOCAL
 0030 1 MYVIEW1 VIEW OF EMPLOYEES
 0040 2 NAME
 0050 2 FIRST-NAME
 0060 2 PERSONNEL-ID
 0070 1 MYVIEW2 VIEW OF VEHICLES
 0080 2 PERSONNEL-ID
 0090 2 MAKE
 0100 END-DEFINE
 0110 *
 0120 LIMIT 15
 0130 READ MYVIEW1 BY NAME STARTING FROM ’JONES’
 0140 FIND MYVIEW2 WITH PERSONNEL-ID = PERSONNEL-ID (0130)
 0150 IF NO RECORDS FOUND
 0160 MOVE ’***NO CAR***’ TO MAKE
 0170 END-NOREC
 0180 DISPLAY NOTITLE NAME (0130) (IS=ON) FIRST-NAME (0130) (IS=ON)
 0190 MAKE (0140)
 0200 END-FIND /* (0140)
 0210 END-READ /* (0130)
 0220 END

Example with Labels:

The following example illustrates the use of statement reference labels. It is identical to the previous program, except
that labels are used for referencing instead of line numbers.

 0010 ** Example Program ’LABELX02’
 0020 DEFINE DATA LOCAL
 0030 1 MYVIEW1 VIEW OF EMPLOYEES
 0040 2 NAME
 0050 2 FIRST-NAME
 0060 2 PERSONNEL-ID
 0070 1 MYVIEW2 VIEW OF VEHICLES
 0080 2 PERSONNEL-ID
 0090 2 MAKE
 0100 END-DEFINE
 0110 *
 0120 LIMIT 15
 0130 RD. READ MYVIEW1 BY NAME STARTING FROM ’JONES’
 0140 FD. FIND MYVIEW2 WITH PERSONNEL-ID = PERSONNEL-ID (FD.)
 0150 IF NO RECORDS FOUND
 0160 MOVE ’***NO CAR***’ TO MAKE
 0170 END-NOREC
 0180 DISPLAY NOTITLE NAME (RD.) (IS=ON) FIRST-NAME (RD.) (IS=ON)
 0190 MAKE (FD.)
 0200 END-FIND /* (FD.)
 0210 END-READ /* (RD.)
 0220 END

11Copyright Software AG 2002

Referencing Statements within a ProgramFurther Programming Aspects

Both programs produce the following output:

 NAME FIRST-NAME MAKE
 -------------------- -------------------- --------------------

 JONES VIRGINIA ***NO CAR***
 MARSHA CHRYSLER
 CHRYSLER
 ROBERT GENERAL MOTORS
 LILLY ***NO CAR***
 EDWARD GENERAL MOTORS
 MARTHA ***NO CAR***
 LAUREL GENERAL MOTORS
 KEVIN DATSUN
 GREGORY FORD
 JOPER MANFRED ***NO CAR***
 JOUSSELIN DANIEL RENAULT
 JUBE GABRIEL ***NO CAR***
 JUNG ERNST ***NO CAR***
 JUNKIN JEREMY ***NO CAR***
 KAISER REINER ***NO CAR***

Copyright Software AG 200212

Further Programming AspectsReferencing Statements within a Program

Control Breaks
A control break occurs when the value of a control field changes.

The execution of statements can be made dependent on a control break. A control break can also be used for the
evaluation of Natural system functions. System functions are discussed later in this section.

AT BREAK Statement
Automatic Break Processing
BEFORE BREAK PROCESSING Statement
User-Initiated Break Processing - The PERFORM BREAK PROCESSING Statement

AT BREAK Statement

With the statement AT BREAK, you specify the processing which is to be performed whenever a control break
occurs, that is, whenever the value of a control field which you specify with the AT BREAK statement changes. As a
control field, you can use a database field or a user-defined variable.

Control Break Based on a Database Field

The field specified as control field in an AT BREAK statement is usually a database field.

Example:

 ...
 AT BREAK OF DEPT
 statements
 END-BREAK
 ...

In this example, the control field is the database field DEPT; if the value of the field changes, for example, FROM
"SALE01" to "SALE02", the statements specified in the AT BREAK statement would be executed.

Instead of an entire field, you can also use only part of a field as a control field. With the notation "/n/" you can
determine that only the first n positions of a field are to be checked for a change in value.

Example:

 ...
 AT BREAK OF DEPT /4/
 statements
 END-BREAK
 ...

In this example, the specified statements would only be executed if the value of the first 4 positions of the field
DEPT changes, for example, FROM "SALE" to "TECH"; if, however, the field value changes from "SALE01" to
"SALE02", this would be ignored and no AT BREAK processing performed.

Example of AT BREAK Statement using a Database Field:

 ** Example Program ’ATBREX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 CITY
 2 COUNTRY
 2 JOB-TITLE
 2 SALARY (1:1)
 END-DEFINE

13Copyright Software AG 2002

Control BreaksFurther Programming Aspects

 *
 READ (5) MYVIEW BY CITY WHERE COUNTRY = ’USA’
 DISPLAY CITY (AL=9) NAME ’POSITION’ JOB-TITLE ’SALARY’ SALARY (1)
 AT BREAK OF CITY
 WRITE / OLD(CITY) (EM=X^X^X^X^X^X^X^X^X^X^X)
 5X ’AVERAGE:’ T*SALARY AVER(SALARY(1)) //
 COUNT(SALARY(1)) ’RECORDS FOUND’ /
 END-BREAK
 AT END OF DATA
 WRITE ’TOTAL (ALL RECORDS):’ T*SALARY(1) TOTAL(SALARY(1))
 END-ENDDATA
 END-READ
 END

In the above program, the first WRITE statement is executed whenever the value of the field CITY changes. In the
AT BREAK statement, the system functions OLD, AVER and COUNT are evaluated (and output in the WRITE
statement). In the AT END OF DATA statement, the system function TOTAL is evaluated. The program produces
the following output:

Page 1 97-08-19 18:17:27

 CITY NAME POSITION SALARY
 --------- -------------------- ------------------------- ----------

 AIKEN SENKO PROGRAMMER 31500

 A I K E N AVERAGE: 31500

 1 RECORDS FOUND

 ALBUQUERQ HAMMOND SECRETARY 22000
 ALBUQUERQ ROLLING MANAGER 34000
 ALBUQUERQ FREEMAN MANAGER 34000
 ALBUQUERQ LINCOLN ANALYST 41000

 A L B U Q U E R Q U E AVERAGE: 32750

 4 RECORDS FOUND

 TOTAL (ALL RECORDS): 162500

Copyright Software AG 200214

Further Programming AspectsAT BREAK Statement

Control Break Based on a User-Defined Variable

A user-defined variable can also be used as control field in an AT BREAK statement.

In the following program, the user-defined variable #LOCATION is used as control field.

 ** Example Program ’ATBREX02’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 CITY
 2 COUNTRY
 2 JOB-TITLE
 2 SALARY (1:1)
 1 #LOCATION (A20)
 END-DEFINE
 *
 READ (5) MYVIEW BY CITY WHERE COUNTRY = ’USA’
 BEFORE BREAK PROCESSING
 COMPRESS CITY ’USA’ INTO #LOCATION
 END-BEFORE
 DISPLAY #LOCATION ’POSITION’ JOB-TITLE ’SALARY’ SALARY (1)
 AT BREAK OF #LOCATION
 SKIP 1
 END-BREAK
 END-READ
 END

The above program produces the following output:

Page 1 97-08-19 18:21:23

 #LOCATION POSITION SALARY
 -------------------- ------------------------- ----------

 AIKEN USA PROGRAMMER 31500

 ALBUQUERQUE USA SECRETARY 22000
 ALBUQUERQUE USA MANAGER 34000
 ALBUQUERQUE USA MANAGER 34000
 ALBUQUERQUE USA ANALYST 41000

15Copyright Software AG 2002

AT BREAK StatementFurther Programming Aspects

Multiple Control Break Levels

As explained above, the notation "/n/" allows some portion of a field to be checked for a control break. It is possible
to combine several AT BREAK statements, using an entire field as control field for one break and part of the same
field as control field for another break. In such a case, the break at the lower level (entire field) must be specified
before the break at the higher level (part of field); that is, in the first AT BREAK statement the entire field must be
specified as control field, and in the second one part of the field.

The following example program illustrates this, using the field DEPT as well as the first 4 positions of that field
(DEPT /4/).

 ** Example Program ’ATBREX03’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 JOB-TITLE
 2 DEPT
 2 SALARY (1:1)
 2 CURR-CODE (1:1)
 END-DEFINE
 READ MYVIEW BY DEPT STARTING FROM ’SALE40’ ENDING AT ’TECH10’
 WHERE SALARY(1) GT 47000 AND CURR-CODE(1) = ’USD’
 AT BREAK OF DEPT
 WRITE ’*** LOWEST BREAK LEVEL ***’ /
 END-BREAK
 AT BREAK OF DEPT /4/
 WRITE ’*** HIGHEST BREAK LEVEL ***’
 END-BREAK
 DISPLAY DEPT NAME ’POSITION’ JOB-TITLE
 END-READ
 END

Page 1 97-08-19 18:24:16

 DEPARTMENT NAME POSITION
 CODE
 ---------- -------------------- -------------------------

 TECH05 HERZOG MANAGER
 TECH05 LAWLER MANAGER
 TECH05 MEYER MANAGER
 *** LOWEST BREAK LEVEL ***

 TECH10 DEKKER DBA
 *** LOWEST BREAK LEVEL ***

 *** HIGHEST BREAK LEVEL ***

In the following program, one blank line is output whenever the value of the field DEPT changes; and whenever the
value in the first 4 positions of DEPT changes, a record count is carried out by evaluating the system function
COUNT.

 ** Example Program ’ATBREX04’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 DEPT
 2 REDEFINE DEPT
 3 #GENDEP (A4)
 2 NAME
 2 SALARY (1)

Copyright Software AG 200216

Further Programming AspectsAT BREAK Statement

 END-DEFINE
 WRITE TITLE ’** PERSONS WITH SALARY > 30000, SORTED BY DEPARTMENT **’ /
 LIMIT 9
 READ MYVIEW BY DEPT FROM ’A’ WHERE SALARY(1) > 30000
 DISPLAY ’DEPT’ DEPT NAME ’SALARY’ SALARY(1)
 AT BREAK OF DEPT
 SKIP 1
 END-BREAK
 AT BREAK OF DEPT /4/
 WRITE COUNT(SALARY(1)) ’RECORDS FOUND IN:’ OLD(#GENDEP) /
 END-BREAK
 END-READ
 END

 ** PERSONS WITH SALARY > 30000, SORTED BY DEPARTMENT **

 DEPT NAME SALARY
 ------ -------------------- ----------

 ADMA01 JENSEN 180000
 ADMA01 PETERSEN 105000
 ADMA01 MORTENSEN 320000
 ADMA01 MADSEN 149000
 ADMA01 BUHL 642000

 ADMA02 HERMANSEN 391500
 ADMA02 PLOUG 162900
 ADMA02 HANSEN 234000

 8 RECORDS FOUND IN: ADMA

 COMP01 HEURTEBISE 168800

 1 RECORDS FOUND IN: COMP

Automatic Break Processing

Automatic break processing is in effect for a FIND, READ, HISTOGRAM, SORT or READ WORK FILE
processing loop which contains an AT BREAK statement.

The value of the control field specified with the AT BREAK statement is checked only for records which satisfy the
selection criteria of both the WITH clause and the WHERE clause.

Natural system functions (AVER, MAX, MIN, etc.) are evaluated for each record after all statements within the
processing loop have been executed. System functions are not evaluated for any record which is rejected by WHERE
criteria.

17Copyright Software AG 2002

Automatic Break ProcessingFurther Programming Aspects

The figure below illustrates the flow logic of automatic break processing.

Copyright Software AG 200218

Further Programming AspectsAutomatic Break Processing

Example of System Functions with AT BREAK Statement:

The following example shows the use of the system functions OLD, MIN, AVER, MAX, SUM and COUNT in an
AT BREAK statement (and of the system function TOTAL in an AT END OF DATA statement).

 ** Example Program ’ATBREX05’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 CITY
 2 SALARY (1:1)
 2 CURR-CODE (1:1)
 END-DEFINE
 *
 LIMIT 3
 READ MYVIEW BY CITY = ’SALT LAKE CITY’
 DISPLAY NOTITLE CITY NAME ’SALARY’ SALARY(1) ’CURRENCY’ CURR-CODE(1)
 AT BREAK OF CITY
 WRITE / OLD(CITY) (EM=X^X^X^X^X^X^X^X^X^X^X^X^X^X^X)
 31T ’ - MINIMUM:’ MIN(SALARY(1)) CURR-CODE(1) /
 31T ’ - AVERAGE:’ AVER(SALARY(1)) CURR-CODE(1) /
 31T ’ - MAXIMUM:’ MAX(SALARY(1)) CURR-CODE(1) /
 31T ’ - SUM:’ SUM(SALARY(1)) CURR-CODE(1) /
 33T COUNT(SALARY(1)) ’RECORDS FOUND’ /
 END-BREAK
 AT END OF DATA
 WRITE 22T ’TOTAL (ALL RECORDS):’ T*SALARY
 TOTAL(SALARY(1)) CURR-CODE(1)
 END-ENDDATA
 END-READ
 END

 CITY NAME SALARY CURRENCY
 -------------------- -------------------- ---------- --------

 SALT LAKE CITY ANDERSON 50000 USD
 SALT LAKE CITY SAMUELSON 24000 USD

 S A L T L A K E C I T Y - MINIMUM: 24000 USD
 - AVERAGE: 37000 USD
 - MAXIMUM: 50000 USD
 - SUM: 74000 USD
 2 RECORDS FOUND

 SAN DIEGO GEE 60000 USD

 S A N D I E G O - MINIMUM: 60000 USD
 - AVERAGE: 60000 USD
 - MAXIMUM: 60000 USD
 - SUM: 60000 USD
 1 RECORDS FOUND

 TOTAL (ALL RECORDS): 134000 USD

19Copyright Software AG 2002

Automatic Break ProcessingFurther Programming Aspects

BEFORE BREAK PROCESSING Statement

With the BEFORE BREAK PROCESSING statement, you can specify statements that are to be executed
immediately before a control break; that is, before the value of the control field is checked, before the statements
specified in the AT BREAK block are executed, and before any Natural system functions are evaluated.

Example of BEFORE BREAK PROCESSING Statement:

 ** Example Program ’BEFORX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 SALARY (1:1)
 2 BONUS (1:1,1:1)
 1 #INCOME (P11)
 END-DEFINE
 *
 LIMIT 5
 READ MYVIEW BY NAME FROM ’B’
 BEFORE BREAK PROCESSING
 COMPUTE #INCOME = SALARY(1) + BONUS(1,1)
 END-BEFORE
 DISPLAY NOTITLE NAME FIRST-NAME (AL=10)
 ’ANNUAL/INCOME’ #INCOME
 ’SALARY’ SALARY(1) (LC==) / ’+ BONUS’ BONUS(1,1) (IC=+)
 AT BREAK OF #INCOME
 WRITE T*#INCOME ’-’(24)
 END-BREAK
 END-READ
 END

 NAME FIRST-NAME ANNUAL SALARY
 INCOME + BONUS
 -------------------- ---------- ------------ -----------
 BACHMANN HANS 297546 = 293546
 +4000

 BAECKER JOHANNES 420244 = 413644
 +6600

 BAECKER KARL 52650 = 48600
 +4050

 BAGAZJA MARJAN 152700 = 129700
 +23000

 BAILLET PATRICK 198500 = 188000
 +10500

Copyright Software AG 200220

Further Programming AspectsBEFORE BREAK PROCESSING Statement

User-Initiated Break Processing - The PERFORM BREAK PROCESSING
Statement

With automatic break processing, the statements specified in an AT BREAK block are executed whenever the value
of the specified control field changes - regardless of the position of the AT BREAK statement in the processing loop.

With a PERFORM BREAK PROCESSING statement, you can perform break processing at a specified position in a
processing loop: the PERFORM BREAK PROCESSING statement is executed when it is encountered in the
processing flow of the program.

Immediately after the PERFORM BREAK PROCESSING, you specify one or more AT BREAK statement blocks:

 ...
 PERFORM BREAK PROCESSING
 AT BREAK OF field1
 statements
 END-BREAK
 AT BREAK OF field2
 statements
 END-BREAK
 ...

When a PERFORM BREAK PROCESSING is executed, Natural checks if a break has occurred; that is, if the value
of the specified control field has changed; and if it has, the specified statements are executed.

With PERFORM BREAK PROCESSING, system functions are evaluated before Natural checks if a break has
occurred.

21Copyright Software AG 2002

User-Initiated Break Processing - The PERFORM BREAK PROCESSING StatementFurther Programming Aspects

The following figure illustrates the flow logic of user-initiated break processing:

Copyright Software AG 200222

Further Programming AspectsUser-Initiated Break Processing - The PERFORM BREAK PROCESSING Statement

Example of PERFORM BREAK PROCESSING Statement:

 ** Example Program ’PERFBX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 DEPT
 2 SALARY (1:1)
 1 #CNTL (N2)
 END-DEFINE
 *
 LIMIT 7
 READ MYVIEW BY DEPT
 AT BREAK OF DEPT /* <- automatic break processing
 SKIP 1
 WRITE ’SUMMARY FOR ALL SALARIES ’
 ’SUM:’ SUM(SALARY(1))
 ’TOTAL:’ TOTAL(SALARY(1))
 ADD 1 TO #CNTL
 END-BREAK
 IF SALARY (1) GREATER THAN 100000 OR BREAK #CNTL
 PERFORM BREAK PROCESSING /* <- user-initiated break processing
 AT BREAK OF #CNTL
 WRITE ’SUMMARY FOR SALARY GREATER 100000’
 ’SUM:’ SUM(SALARY(1))
 ’TOTAL:’ TOTAL(SALARY(1))
 END-BREAK
 END-IF
 IF SALARY (1) GREATER THAN 150000 OR BREAK #CNTL
 PERFORM BREAK PROCESSING /* <- user-initiated break processing
 AT BREAK OF #CNTL
 WRITE ’SUMMARY FOR SALARY GREATER 150000’
 ’SUM:’ SUM(SALARY(1))
 ’TOTAL:’ TOTAL(SALARY(1))
 END-BREAK
 END-IF
 DISPLAY NAME DEPT SALARY(1)
 END-READ
 END

Page 1 97-08-18 17:11:11

 NAME DEPARTMENT ANNUAL
 CODE SALARY
 -------------------- ---------- ----------

 JENSEN ADMA01 180000
 PETERSEN ADMA01 105000
 MORTENSEN ADMA01 320000
 MADSEN ADMA01 149000
 BUHL ADMA01 642000

 SUMMARY FOR ALL SALARIES SUM: 1396000 TOTAL: 1396000
 SUMMARY FOR SALARY GREATER 100000 SUM: 1396000 TOTAL: 1396000
 SUMMARY FOR SALARY GREATER 150000 SUM: 1142000 TOTAL: 1142000
 HERMANSEN ADMA02 391500
 PLOUG ADMA02 162900

 SUMMARY FOR ALL SALARIES SUM: 554400 TOTAL: 1950400
 SUMMARY FOR SALARY GREATER 100000 SUM: 554400 TOTAL: 1950400
 SUMMARY FOR SALARY GREATER 150000 SUM: 554400 TOTAL: 1696400

23Copyright Software AG 2002

User-Initiated Break Processing - The PERFORM BREAK PROCESSING StatementFurther Programming Aspects

Further Example of AT BREAK Statement:

See program ATBREX06 in library SYSEXPG.

Copyright Software AG 200224

Further Programming AspectsUser-Initiated Break Processing - The PERFORM BREAK PROCESSING Statement

Data Computation
This section discusses the arithmetic statements COMPUTE, ADD, SUBTRACT, MULTIPLY and DIVIDE; as well
as the statements MOVE and COMPRESS, which are used to transfer values from one field to another.

Format of Fields
COMPUTE Statement
Statements MOVE and COMPUTE
Statements ADD, SUBTRACT, MULTIPLY and DIVIDE
COMPRESS Statement
Mathematical Functions

Format of Fields

For optimum processing, user-defined variables used in arithmetic statements should be defined with format P
(packed numeric).

COMPUTE Statement

The COMPUTE statement is used to perform arithmetic operations. The following connecting operators are
available:

Exponentiation **

Multiplication *

Division /

Addition +

Subtraction -

Parentheses may be used to indicate logical grouping.

Example 1:

 COMPUTE LEAVE-DUE = LEAVE-DUE * 1.1

In this example, the value of the field LEAVE-DUE is multiplied by 1.1, and the result is placed in the field
LEAVE-DUE.

Example 2:

 COMPUTE #A = SQRT (#B)

In this example, the square root of the value of the field #B is evaluated, and the result is assigned to the field #A.
"SQRT" is a mathematical function supported in the arithmetic statements COMPUTE, ADD, SUBTRACT,
MULTIPLY, and DIVIDE. An overview of mathematical functions is provided later in this section.

Example 3:

 COMPUTE #INCOME = BONUS (1,1) + SALARY (1)

In this example, the first bonus of the current year and the current salary amount are added and assigned to the field
#INCOME.

25Copyright Software AG 2002

Data ComputationFurther Programming Aspects

Statements MOVE and COMPUTE

The statements MOVE and COMPUTE can be used to transfer the value of an operand into one or more fields. The
operand may be a constant such as a text item or a number, a database field, a user-defined variable, a system
variable, or, in certain cases, a system function.

The difference between the two statements is that in the MOVE statement the value to be moved is specified on the
left; in the COMPUTE statement the value to be assigned is specified on the right, as shown in the following
examples.

Examples:

 MOVE NAME TO #LAST-NAME
 COMPUTE #LAST-NAME = NAME

Statements ADD, SUBTRACT, MULTIPLY and DIVIDE

The ADD, SUBTRACT, MULTIPLY and DIVIDE statements are used to perform arithmetic operations.

Examples:

 ADD +5 -2 -1 GIVING #A
 SUBTRACT 6 FROM 11 GIVING #B
 MULTIPLY 3 BY 4 GIVING #C
 DIVIDE 3 INTO #D GIVING #E

All four statements have a ROUNDED option, which you can use if you wish the result of the operation to be
rounded.

The Natural Statements documentation provides more detailed information on these statements.

Example of MOVE, SUBTRACT and COMPUTE Statements:

The following program demonstrates the use of user-defined variables in arithmetic statements. It calculates the ages
and wages of three employees and outputs these.

 ** Example Program ’COMPUX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 BIRTH
 2 JOB-TITLE
 2 SALARY (1:1)
 2 BONUS (1:1,1:1)
 1 #DATE (N8)
 1 REDEFINE #DATE
 2 #YEAR (N4)
 2 #MONTH (N2)
 2 #DAY (N2)
 1 #BIRTH-YEAR (A4)
 1 REDEFINE #BIRTH-YEAR
 2 #BIRTH-YEAR-N (N4)
 1 #AGE (N3)
 1 #INCOME (P9)
 END-DEFINE
 *
 MOVE *DATN TO #DATE
 *
 READ (3) MYVIEW BY NAME STARTING FROM ’JONES’
 MOVE EDITED BIRTH (EM=YYYY) TO #BIRTH-YEAR

Copyright Software AG 200226

Further Programming AspectsStatements MOVE and COMPUTE

 SUBTRACT #BIRTH-YEAR-N FROM #YEAR GIVING #AGE
 COMPUTE #INCOME = BONUS (1:1,1:1) + SALARY (1:1)
 DISPLAY NAME ’POSITION’ JOB-TITLE #AGE #INCOME
 END-READ
 END

Page 1 99-01-22 12:42:50

 NAME POSITION #AGE #INCOME
 -------------------- ------------------------- ---- ----------

 JONES MANAGER 58 55000
 JONES DIRECTOR 53 50000
 JONES PROGRAMMER 43 31000

COMPRESS Statement

The COMPRESS statement is used to transfer (combine) the contents of two or more operands into a single
alphanumeric field.

Leading zeros in a numeric field and trailing blanks in an alphanumeric field are suppressed before the field value is
moved to the receiving field.

By default, the transferred values are separated from one another by a single blank in the receiving field. Other
separating possibilities are described in the Natural Statements documentation.

Example:

 COMPRESS ’NAME:’ FIRST-NAME #LAST-NAME INTO #FULLNAME

In this example, a text constant (’NAME:’), a database field (FIRST-NAME) and a user-defined variable
(#LAST-NAME) are combined into one user-defined variable (#FULLNAME) using a COMPRESS statement.

For further information on the COMPRESS statement, please refer to the Natural Statements documentation.

Example of COMPRESS and MOVE Statements:

 ** Example Program ’ComPRX01’
 DEFINE DATA LOCAL
 1 MYVIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 MIDDLE-I
 1 #LAST-NAME (A15)
 1 #FULL-NAME (A30)
 END-DEFINE
 *
 READ (3) MYVIEW BY NAME STARTING FROM ’JONES’
 MOVE NAME TO #LAST-NAME
 COMPRESS ’NAME:’ FIRST-NAME MIDDLE-I #LAST-NAME INTO #FULL-NAME
 DISPLAY #FULL-NAME (UC==) FIRST-NAME ’I’ MIDDLE-I (AL=1) NAME
 END-READ
 END

The above program illustrates the use of the statements MOVE and COMPRESS. Notice the output format of the
compressed field:

27Copyright Software AG 2002

COMPRESS StatementFurther Programming Aspects

Page 1 97-08-18 17:47:03

 #FULL-NAME FIRST-NAME I NAME
 ============================== -------------------- - --------------------

 NAME: VIRGINIA J JONES VIRGINIA J JONES
 NAME: MARSHA JONES MARSHA JONES
 NAME: ROBERT B JONES ROBERT B JONES

In multiple-line displays, it may be useful to combine fields/text in a user-defined variable by using a COMPRESS
statement.

Example of COMPRESS Statement:

In the following program, three user-defined variables are used: #FULLSAL, #FULLNAME, and #FULLCITY.
#FULLSAL, for example, contains the text ’SALARY:’ and the database fields SALARY and CURR-CODE. The
WRITE statement then references only the compressed variables.

 ** Example Program ’COMPRX02’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 SALARY (1:1)
 2 CURR-CODE (1:1)
 2 CITY
 2 ADDRESS-LINE (1:1)
 2 ZIP
 1 #FULLSAL (A25)
 1 #FULLNAME (A25)
 1 #FULLCITY (A25)
 END-DEFINE
 READ (3) VIEWEMP BY CITY STARTING FROM ’NEW YORK’
 COMPRESS ’SALARY:’ CURR-CODE(1) SALARY(1) INTO #FULLSAL
 COMPRESS FIRST-NAME NAME INTO #FULLNAME
 COMPRESS ZIP CITY INTO #FULLCITY
 DISPLAY ’NAME AND ADDRESS’ NAME (EM=X^X^X^X^X^X^X^X^X^X^X^X)
 WRITE 1/5 #FULLNAME 1/37 #FULLSAL
 2/5 ADDRESS-LINE (1)
 3/5 #FULLCITY
 SKIP 1
 END-READ
 END

Copyright Software AG 200228

Further Programming AspectsCOMPRESS Statement

Page 1 97-08-19 18:01:17

 NAME AND ADDRESS

 R U B I N
 SYLVIA RUBIN SALARY: USD 17000
 2003 SARAZEN PLACE
 10036 NEW YORK

 W A L L A C E
 MARY WALLACE SALARY: USD 38000
 12248 LAUREL GLADE C
 10036 NEW YORK

 K E L L O G G
 HENRIETTA KELLOGG SALARY: USD 52000
 1001 JEFF RYAN DR.
 19711 NEWARK

Mathematical Functions

The following Natural mathematical functions are supported in arithmetic processing statements (ADD, COMPUTE,
DIVIDE, MULTIPLY, SUBTRACT).

Function Meaning

ABS(field) Absolute value of field.

ATN (field) Arc tangent of field.

COS(field) Cosine of field.

EXP(field) Exponential of field.

FRAC(field) Fractional part of field.

INT (field) Integer part of field.

LOG (field) Natural logarithm of field.

SGN(field) Sign of field.

SIN(field) Sine of field.

SQRT(field) Square root of field.

TAN (field) Tangent of field.

VAL (field) Numeric value of an alphanumeric field.

See the Natural Reference documentation for a detailed explanation of each mathematical function.

FurtherExamples of COMPUTE, MOVE and COMPRESS Statements:

See programs WRITEX11, IFX03 and COMPRX03 in library SYSEXPG.

29Copyright Software AG 2002

Mathematical FunctionsFurther Programming Aspects

System Variables and System Functions
The following topics are covered below:

System Variables
System Functions

System Variables

Natural system variables contain information about the current Natural session, such as: the current library, the user
and terminal identification; the current status of a loop processing; the current report processing status; the current
date and time.

This information may be used in Natural programs by specifying the appropriate system variables. For example:

System Variable Content

*INIT-USER The user ID of the terminal user.

*LANGUAGE The language in effect.

*LIBRARY-ID The current library ID.

*INIT-ID The terminal ID.

*ERROR-NR The Natural error number.

*PAGE-NUMBER The current value for page number.

*COUNTER The number of times a processing loop has been entered.

*NUMBER The number of records selected.

Copyright Software AG 200230

Further Programming AspectsSystem Variables and System Functions

Some date and time system variables include the following:

System Variable Content

*DATU Current date in format MM/DD/YY

*DAT4U Current date in format MM/DD/YYYY

*DATE Current date in format DD/MM/YY

*DAT4E Current date in format DD/MM/YYYY

*DATI Current date in format YY-MM-DD

*DAT4I Current date in format YYYY-MM-DD

*DATD Current date in format DD.MM.YY

*DAT4D Current date in format DD.MM.YYYY

*TIME Time of day in format HH:MM:SS.T

*TIMN Time of day in format HHMMSST

The names of all system variables begin with an asterisk (*).

Date and time system variables may be specified in a DISPLAY, WRITE, PRINT, MOVE or COMPUTE statement.

For further information on system variables, see System Variables in the Natural Reference documentation.

31Copyright Software AG 2002

System VariablesFurther Programming Aspects

System Functions

Natural system functions are a set of statistical and mathematical functions that can be applied to the data after a
record has been processed but before break processing occurs.

System functions may be specified in a WRITE, DISPLAY, PRINT, COMPUTE or MOVE statement that is used in
conjunction with an AT END OF PAGE, AT END OF DATA or AT BREAK statement.

In the case of an AT END OF PAGE statement, the corresponding DISPLAY statement must include the GIVE
SYSTEM FUNCTIONS clause (as shown in the example below).

The following system functions are available:

System Function Information Returned

AVER (field) Average of all values for field.

NAVER (field)

Average of all values for field, not counting null values.

MAX (field) Maximum value of field.

MIN (field) Minimum value of field.

NMIN (field) Minimum value of field, not counting null values.

OLD (field) Value of field value prior to change in control value (AT BREAK condition).

SUM (field) Sum of all field values
(reset when control value in AT BREAK changes).

TOTAL (field) Total of all field values
(not reset when control value in AT BREAK changes).

COUNT (field) Number of passes through a processing loop.

NCOUNT (field) Number of passes through a processing loop, not counting passes where the control
field contains a null value.

For further information on system functions, see Natural System Functions in the Natural Reference documentation.

Copyright Software AG 200232

Further Programming AspectsSystem Functions

Example of System Variables and System Functions:

 ** Example Program ’SYSVAX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 CITY
 2 NAME
 2 JOB-TITLE
 2 INCOME (1:1)
 3 CURR-CODE
 3 SALARY
 3 BONUS (1:1)
 END-DEFINE
 *
 WRITE TITLE ’EMPLOYEE SALARY REPORT AS OF’ *DAT4E /
 READ (3) MYVIEW BY CITY STARTING FROM ’E’
 DISPLAY GIVE SYSTEM FUNCTIONS
 NAME (AL=15) JOB-TITLE (AL=15) INCOME (1:1)
 AT START OF DATA
 WRITE ’REPORT CREATED AT:’ *TIME ’HOURS’ /
 END-START
 AT END OF DATA
 WRITE / ’LAST PERSON SELECTED:’ OLD (NAME) /
 END-ENDDATA
 END-READ
 AT END OF PAGE
 WRITE ’AVERAGE SALARY:’ AVER(SALARY(1))
 END-ENDPAGE
 END

The above program illustrates the use of system variables and system functions:

The system variable *DATE is output with the WRITE TITLE statement; the system variable *TIME is output with
the AT START OF DATA statement.

The system function OLD is used in the AT END OF DATA statement; the system function AVER is used in the AT
END OF PAGE statement.

Note how the system variables and system function are displayed:

EMPLOYEE SALARY REPORT AS OF 18/01/1999

 NAME CURRENT INCOME
 POSITION
 CURRENCY ANNUAL BONUS
 CODE SALARY
 --------------- --------------- -------- ---------- --------

 REPORT CREATED AT: 11:51:29.3 HOURS

 DUYVERMAN PROGRAMMER USD 34000 0
 PRATT SALES PERSON USD 38000 9000
 MARKUSH TRAINEE USD 22000 0

 LAST PERSON SELECTED: MARKUSH

 AVERAGE SALARY: 31333

33Copyright Software AG 2002

System FunctionsFurther Programming Aspects

Further Examples of System Variables:

See programs EDITMX05, READX04 and WTITLX01 in library SYSEXPG.

Further Examples of System Functions:

See programs ATBREX06 and ATENPX01 in library SYSEXPG.

Copyright Software AG 200234

Further Programming AspectsSystem Functions

Stack
The Natural stack is a kind of "intermediate storage" in which you can store Natural commands, user-defined
commands, and input data to be used by an INPUT statement. In the stack you can store a series of functions which
are frequently executed one after the other, such as a series of logon commands.

The data/commands stored in the stack are "stacked" on top of one another. You can decide whether to put them on
top or at the bottom of the stack. The data/command in the stack can only be processed in the order in which they are
stacked, beginning from the top of the stack.

In a program, you may reference the system variable *DATA to determine the content of the stack (see the Natural
Reference documentation for further information).

The total size of the stack is defined by the remaining portion in the ESIZE buffer after allocation for the global data
area and the program source area.

The following topics are covered below:

Stack Processing
Placing Data in the Stack
Clearing the Stack

Stack Processing

The processing of the commands/data stored in the stack differs depending on the function being performed.

If a command is expected, that is, the NEXT prompt is about to be displayed, Natural first checks if a command is on
the top of the stack. If there is, the NEXT prompt is suppressed and the command is read and deleted from the stack;
the command is then executed as if it had been entered manually in response to the NEXT prompt.

If an INPUT statement containing input fields is being executed, Natural first checks if there are any input data on
the top of the stack. If there are, these data are passed to the INPUT statement (in delimiter mode); the data read from
the stack must be format-compatible with the variables in the INPUT statement; the data are then deleted from the
stack.

If an INPUT statement was executed using data from the stack, and this INPUT statement is re-executed via a
REINPUT statement, the INPUT statement screen will be re-executed displaying the same data from the stack as
when it was executed originally. With the REINPUT statement, no further data are read from the stack.

When a Natural program terminates normally, the stack is flushed beginning from the top until either a command is
on the top of the stack or the stack is cleared. When a Natural program is terminated via the terminal command
"%%" or with an error, the stack is cleared entirely.

35Copyright Software AG 2002

StackFurther Programming Aspects

Placing Data in the Stack

The following methods can be used to place data/commands on the stack:

STACK Parameter

The Natural profile parameter STACK may be used to place data/commands on the stack. The STACK parameter,
which is described in the Natural Operations documentation, can be specified by the Natural administrator in the
Natural parameter module at the installation of Natural; or you can specify it as a dynamic parameter when you
invoke Natural.

When data/commands are to be placed on the stack via the STACK parameter, multiple commands must be
separated from one another by a semicolon (;). If a command is to be passed within a sequence of data or command
elements, it must be preceded by a semicolon.

Data for multiple INPUT statements must be separated from one another by a colon (:). Data that are to be read by a
separate INPUT statement must be preceded by a colon. If a command is to be stacked which requires parameters, no
colon is to be placed between the command and the parameters.

Semicolon and colon must not be used within the input data themselves as they will be interpreted as separation
characters.

STACK Statement

The STACK statement can be used within a program to place data/commands in the stack. The data elements
specified in one STACK statement will be used for one INPUT statement, which means that if data for multiple
INPUT statements are to be placed on the stack, multiple STACK statements must be used.

Data may be placed on the stack either unformatted or formatted:

If unformatted data are read from the stack, the data string is interpreted in delimiter mode and the characters
specified with the session parameters IA (Input Assignment character) and ID (Input Delimiter character) are
processed as control characters for keyword assignment and data separation.
If formatted data are placed on the stack, each content of a field will be separated and passed to one input field
in the corresponding INPUT statement.

See the Natural Statements documentation for further information on the STACK statement.

FETCH and RUN Statements

The execution of a FETCH or RUN statement that contains parameters to be passed to the invoked program will
result in these parameters being placed on top of the stack.

Clearing the Stack

The contents of the stack can be deleted with the RELEASE statement. See the Natural Statements documentation
for details on the RELEASE statement.

Copyright Software AG 200236

Further Programming AspectsPlacing Data in the Stack

Processing of Date Information
This section covers various aspects concerning the handling of dates in your Natural applications:

Edit Masks for Date Fields and Date System Variables
Default Edit Mask for Date - The DTFORM Parameter
Date Format for Alphanumeric Representation - The DF Parameter
Date Format for Output - The DFOUT Parameter
Date Format for Stack - The DFSTACK Parameter
Year Sliding Window - The YSLW Parameter
Combinations of DFSTACK and YSLW
Date Format for Default Page Title - The DFTITLE Parameter

Edit Masks for Date Fields and Date System Variables

If you wish the value of a date field to be output in a specific representation, you usually specify an edit mask for the
field. With an edit mask, you determine character by character what the output is to look like.

If you wish to use the current date in a specific representation, you need not define a date field and specify an edit
mask for it; instead you can simply use a date system variable. Natural provides various date system variables, which
contain the current date in different representations. Some of these representations contain a 2-digit year component,
some a 4-digit year component.

For more information see the examples of date system variables. For more information and a list of all date system
variables, see the Natural Reference documentation.

Default Edit Mask for Date - The DTFORM Parameter

The profile parameter DTFORM determines the default format used for dates as part of the default title on Natural
reports, for date constants and for date input.

This date format determines the sequence of the day, month and year components of a date, as well as the delimiter
characters to be used between these components.

Possible DTFORM settings are:

Setting Date Format* Example

DTFORM=I yyyy-mm-dd 1997-12-31

DTFORM=G dd.mm.yyyy 31.12.1997

DTFORM=E dd/mm/yyyy 31/12/1997

DTFORM=U mm/dd/yyyy 12/31/1997

* dd = day, mm = month, yyyy = year.

The DTFORM parameter can be set in the Natural parameter module/file or dynamically when Natural is invoked.
By default, DTFORM=I applies.

37Copyright Software AG 2002

Processing of Date InformationFurther Programming Aspects

Date Format for Alphanumeric Representation - The DF Parameter

The session parameter DF only applies to date fields for which no edit mask is specified.

If an edit mask is specified, the representation of the field value is determined by the edit mask. If no edit mask is
specified, the representation of the field value is determined by the session parameter DF in combination with the
DTFORM profile parameter.

With the DF parameter, you can choose one of the following date representations:

DF=S 8-byte representation with 2-digit year component and delimiters (yy-mm-dd).

DF=I 8-byte representation with 4-digit year component without delimiters (yyyymmdd).

DF=L 10-byte representation with 4-digit year component and delimiters (yyyy-mm-dd).

For each representation, the sequence of the day, month and year components, and the delimiter characters used, are
determined by the DTFORM parameter.

By default, DF=S applies (except for INPUT statements; see below).

The DF parameter is evaluated at compilation. It can be specified with the FORMAT statement, the statements
INPUT, DISPLAY, WRITE and PRINT (at statement and field level), and the statements MOVE, COMPRESS,
STACK, RUN and FETCH (at field level).

The DF parameter applies to the following:

DISPLAY, WRITE and PRINT: When the value of a date variable is output with one of these statements, the
value is converted to an alphanumeric representation before it is output. The DF parameter determines which
representation is used.
MOVE and COMPRESS: When the value of a date variable is transferred to an alphanumeric field with a
MOVE or COMPRESS statement, the value is converted to an alphanumeric representation before it is
transferred. The DF parameter determines which representation is used.
STACK, FETCH and RUN: When the value of a date variable is placed on the stack, it is converted to
alphanumeric representation before it is placed on the stack. The DF parameter determines which representation
is used.
The same applies when a date variable is specified as a parameter in a FETCH or RUN statement (as these
parameters are also passed via the stack).
INPUT: When a data variable is used in an INPUT statement, the DF parameter determines how a value must
be entered in the field.
However, when a date variable for which no DF parameter is specified is used in an INPUT statement, the date
can be entered either with a 2-digit year component and delimiters or with a 4-digit year component and no
delimiters. In this case, too, the sequence of the day, month and year components, and the delimiter characters
to be used, are determined by the DTFORM parameter.

With DF=S, only 2 digits are provided for the year information; this means that if a date value contained the century,
this information would be lost during the conversion. To retain the century information, you set DF=I or DF=L.

Copyright Software AG 200238

Further Programming AspectsDate Format for Alphanumeric Representation - The DF Parameter

Examples of DF Parameter with WRITE Statements:

 /* DF=S (default)
 WRITE *DATX /* Output has this format: dd.mm.yy
 END

 FORMAT DF=I
 WRITE *DATX /* Output has this format: ddmmyyyy
 END

 FORMAT DF=L
 WRITE *DATX /* Output has this format: dd.mm.yyyy
 END

These examples assume that DTFORM=G applies.

Example of DF Parameter with MOVE Statement:

 DEFINE DATA LOCAL
 1 #DATE (D) INIT <D’31/12/1997’>
 1 #ALPHA (A10)
 END-DEFINE
 ...
 MOVE #DATE TO #ALPHA /* Result: #ALPHA contains 31/12/97
 MOVE #DATE (DF=I) TO #ALPHA /* Result: #ALPHA contains 31121997
 MOVE #DATE (DF=L) TO #ALPHA /* Result: #ALPHA contains 31/12/1997
 ...

This example assumes that DTFORM=E applies.

Example of DF Parameter with STACK Statement:

 DEFINE DATA LOCAL
 1 #DATE (D) INIT <D’1997-12-31’>
 1 #ALPHA1(A10)
 1 #ALPHA2(A10)
 1 #ALPHA3(A10)
 END-DEFINE
 ...
 STACK TOP DATA #DATE (DF=S) #DATE (DF=I) #DATE (DF=L)
 ...
 INPUT #ALPHA1 #ALPHA2 #ALPHA3
 ...
 /* Result: #ALPHA1 contains 97-12-31
 /* #ALPHA2 contains 19971231
 /* #ALPHA3 contains 1997-12-31
 ...

This example assumes that DTFORM=I applies.

39Copyright Software AG 2002

Date Format for Alphanumeric Representation - The DF ParameterFurther Programming Aspects

Example of DF Parameter with INPUT Statement:

 DEFINE DATA LOCAL
 1 #DATE1 (D)
 1 #DATE2 (D)
 1 #DATE3 (D)
 1 #DATE4 (D)
 END-DEFINE
 ...
 INPUT #DATE1 (DF=S) /* Input must have this format: yy-mm-dd
 #DATE2 (DF=I) /* Input must have this format: yyyymmdd
 #DATE3 (DF=L) /* Input must have this format: yyyy-mm-dd
 #DATE4 /* Input must have this format: yy-mm-dd or yyyymmdd
 ...

This example assumes that DTFORM=I applies.

Copyright Software AG 200240

Further Programming AspectsDate Format for Alphanumeric Representation - The DF Parameter

Date Format for Output - The DFOUT Parameter

The session/profile parameter DFOUT only applies to date fields in INPUT, DISPLAY, PRINT and WRITE
statements for which no edit mask is specified, and for which no DF parameter applies.

For date fields which are displayed by INPUT, DISPLAY, PRINT and WRITE statements and for which neither an
edit mask is specified nor a DF parameter applies, the profile/session parameter DFOUT determines the format in
which the field values are displayed.

Possible DFOUT settings are:

DFOUT=S Date variables are displayed with a 2-digit year component, and delimiters as determined by the
DTFORM parameter (yy-mm-dd).

DFOUT=I Date variables are displayed with a 4-digit year component and no delimiters (yyyymmdd).

By default, DFOUT=S applies. For either DFOUT setting, the sequence of the day, month and year components in
the date values is determined by the DTFORM parameter.

The lengths of the date fields are not affected by the DFOUT setting, as either date value representation fits into an
8-byte field.

The DFOUT parameter can be set in the Natural parameter module/file, dynamically when Natural is invoked, or
with the system command GLOBALS. It is evaluated at runtime.

Example:

 DEFINE DATA LOCAL
 1 #DATE (D) INIT <D’1997-12-31’>
 END-DEFINE
 ...
 WRITE #DATE /* Output if DFOUT=S is set ...: 97-12-31
 /* Output if DFOUT=I is set ...: 19971231
 WRITE #DATE (DF=L) /* Output (regardless of DFOUT): 1997-12-31
 ...

This example assumes that DTFORM=I applies.

41Copyright Software AG 2002

Date Format for Output - The DFOUT ParameterFurther Programming Aspects

Date Format for Stack - The DFSTACK Parameter

The session/profile parameter DFSTACK only applies to date fields used in STACK, FETCH and RUN statements
for which no DF parameter has been specified.

The DFSTACK parameter determines the format in which the values of date variables are placed on the stack via a
STACK, RUN or FETCH statement.

Possible DFSTACK settings are:

DFSTACK=S Date variables are placed on the stack with a 2-digit year component, and delimiters as determined
by the profile DTFORM parameter (yy-mm-dd).

DFSTACK=C Same as DFSTACK=S. However, a change in the century will be intercepted at runtime.

DFSTACK=I Date variables are placed on the stack with a 4-digit year component and no delimiters
(yyyymmdd).

By default, DFSTACK=S applies. DFSTACK=S means that when a date value is placed on the stack, it is placed
there without the century information (which is lost). When the value is then read from the stack and placed into
another date variable, the century is either assumed to be the current one or determined by the setting of the YSLW
parameter (see below). This might lead to the century being different from that of the original date value; however,
Natural would not issue any error in this case.

DFSTACK=C works the same as DFSTACK=S in that a date value is placed on the stack without the century
information. However, if the value is read from the stack and the resulting century is different from that of the
original date value (either because of the YSLW parameter, or the original century not being the current one),
Natural issues a runtime error.

Note:
This runtime error is already issued at the time when the value is placed on the stack.

DFSTACK=I allows you to place a date value on the stack in a length of 8 bytes without losing the century
information.

The DFSTACK parameter can be set in the Natural parameter module/file, dynamically when Natural is invoked, or
with the system command GLOBALS. It is evaluated at runtime.

Example:

 DEFINE DATA LOCAL
 1 #DATE (D) INIT <D’1997-12-31’>
 1 #ALPHA1(A8)
 1 #ALPHA2(A10)
 END-DEFINE
 ...
 STACK TOP DATA #DATE #DATE (DF=L)
 ...
 INPUT #ALPHA1 #ALPHA2
 ...
 /* Result if DFSTACK=S or =C is set: #ALPHA1 contains 97-12-31
 /* Result if DFSTACK=I is set: #ALPHA1 contains 19971231
 /* Result (regardless of DFSTACK) .: #ALPHA2 contains 1997-12-31
 ...

This example assumes that DTFORM=I and YSLW=0 apply.

Copyright Software AG 200242

Further Programming AspectsDate Format for Stack - The DFSTACK Parameter

Year Sliding Window - The YSLW Parameter

The profile parameter YSLW allows you determine the century of a 2-digit year value.

The YSLW parameter can be set in the Natural parameter module/file or dynamically when Natural is invoked. It is
evaluated at runtime when an alphanumeric date value with a 2-digit year component is moved into a date variable.
This applies to data values which are:

used with the mathematical function VAL,
used with the IS(D) option in a logical condition,
read from the stack as input data, or
entered in an input field as input data.

The YSLW parameter determines the range of years covered by a so-called "year sliding window". The
sliding-window mechanism assumes a date with a 2-digit year to be within a "window" of 100 years. Within these
100 years, every 2-digit year value can be uniquely related to a specific century.

With the YSLW parameter, you determine how many years in the past that 100-year range is to begin: The YSLW
value is subtracted from the current year to determine the first year of the window range.

Possible values of the YSLW parameter are 0 to 99. The default value is YSLW=0, which means that no
sliding-window mechanism is used; that is, a date with a 2-digit year is assumed to be in the current century.

43Copyright Software AG 2002

Year Sliding Window - The YSLW ParameterFurther Programming Aspects

Example 1:

If the current year is 1997 and you specify YSLW=40, the sliding window will cover the years 1957 to 2056. A
2-digit year value nn from 57 to 99 is interpreted accordingly as 19nn, while a 2-digit year value nn from 00 to 56 is
interpreted as 20nn.

Copyright Software AG 200244

Further Programming AspectsYear Sliding Window - The YSLW Parameter

Example 2:

If the current year is 1997 and you specify YSLW=20, the sliding window will cover the years 1977 to 2076. A
2-digit year value nn from 77 to 99 is interpreted accordingly as 19nn, while a 2-digit year value nn from 00 to 76 is
interpreted as 20nn.

45Copyright Software AG 2002

Year Sliding Window - The YSLW ParameterFurther Programming Aspects

Combinations of DFSTACK and YSLW

The following examples illustrate the effects of using various combinations of the parameters DFSTACK and
YSLW.

All these examples assume that DTFORM=I applies.

Example 1:

This example assumes the current year to be 1997, and the following parameter settings:

DFSTACK=S (default)
YSLW=20

 DEFINE DATA LOCAL
 1 #DATE1 (D) INIT <D’ 1956-12-31 ’>
 1 #DATE2 (D)
 END-DEFINE
 ...
 STACK TOP DATA #DATE1 /* century information is lost (year 56 is stacked)
 ...
 INPUT #DATE2 /* year sliding window determines 56 to be 2056
 ...
 /* Result: #DATE2 contains 2056-12-31

In this case, the year sliding window is not set appropriately, so that the century information is (inadvertently)
changed.

Example 2:

This example assumes the current year to be 1997, and the following parameter settings:

DFSTACK=S (default)
YSLW=50

 DEFINE DATA LOCAL
 1 #DATE1 (D) INIT <D’ 1956-12-31 ’>
 1 #DATE2 (D)
 END-DEFINE
 ...
 STACK TOP DATA #DATE1 /* century information is lost (year 56 is stacked)
 ...
 INPUT #DATE2 /* year sliding window determines 56 to be 1956
 ...
 /* Result: #DATE2 contains 1956-12-31

In this case, the year sliding window is set appropriately, so that the original century information is correctly
restored.

Example 3:

This example assumes the current year to be 1997, and the following parameter settings:

DFSTACK=C
YSLW=0 (default)

Copyright Software AG 200246

Further Programming AspectsCombinations of DFSTACK and YSLW

 DEFINE DATA LOCAL
 1 #DATE1 (D) INIT <D’ 2056-12-31 ’>
 1 #DATE2 (D)
 END-DEFINE
 ...
 STACK TOP DATA #DATE1 /* century information is lost (year 56 is stacked)
 ...
 INPUT #DATE2 /* 56 is assumed to be in current century -> 1956
 ...
 /* Result: RUNTIME ERROR (UNINTENDED CENTURY CHANGE)

In this case, the century information is (inadvertently) changed. However, this change is intercepted by the
DFSTACK=C setting.

Example 4:

This example assumes the current year to be 1997, and the following parameter settings:

DFSTACK=C
YSLW=20

 DEFINE DATA LOCAL
 1 #DATE1 (D) INIT <D’ 1956-12-31 ’>
 1 #DATE2 (D)
 END-DEFINE
 ...
 STACK TOP DATA #DATE1 /* century information is lost (year 56 is stacked)
 ...
 INPUT #DATE2 /* year sliding window determines 56 to be 2056
 ...
 /* Result: RUNTIME ERROR (UNINTENDED CENTURY CHANGE)

In this case, the century information is changed due to the year sliding window. However, this change is intercepted
by the DFSTACK=C setting.

47Copyright Software AG 2002

Combinations of DFSTACK and YSLWFurther Programming Aspects

Date Format for Default Page Title - The DFTITLE Parameter

The session/profile parameter DFTITLE determines the format of the date in a default page title (as output with a
DISPLAY, WRITE or PRINT statement).

DFTITLE=S The date is output with a 2-digit year component and delimiters (yy-mm-dd).

DFTITLE=L The date is output with a 4-digit year component and delimiters (yyyy-mm-dd).

DFTITLE=I The date is output with a 4-digit year component and no delimiters (yyyymmdd).

For each of these output formats, the sequence of the day, month and year components, and the delimiter characters
used, are determined by the DTFORM parameter.

The DFTITLE parameter can be set in the Natural parameter module/file, dynamically when Natural is invoked, or
with the system command GLOBALS. It is evaluated at runtime.

Example:

 WRITE ’HELLO’
 END
 /*
 /* Date in page title if DFTITLE=S is set ...: 98-10-31
 /* Date in page title if DFTITLE=L is set ...: 1998-10-31
 /* Date in page title if DFTITLE=I is set ...: 19981031

This example assumes that DTFORM=I applies.

Note:
The DFTITLE parameter has no effect on a user-defined page title as specified with a WRITE TITLE statement.

Copyright Software AG 200248

Further Programming AspectsDate Format for Default Page Title - The DFTITLE Parameter

	Further Programming Aspects
	End of Program - The END Statement
	End of Application - The STOP Statement
	Conditional Processing - The IF Statement
	Nested IF Statements

	Loop Processing
	Limiting Database Loops
	LT Session Parameter
	LIMIT Statement
	Limit Notation

	Limiting Non-Database Loops - The REPEAT Statement
	Terminating a Processing Loop - The ESCAPE Statement
	Loops Within Loops
	Referencing Statements within a Program

	Control Breaks
	AT BREAK Statement
	Control Break Based on a Database Field
	Control Break Based on a User-Defined Variable
	Multiple Control Break Levels

	Automatic Break Processing
	BEFORE BREAK PROCESSING Statement
	User-Initiated Break Processing - The PERFORM BREAK PROCESSING Statement

	Data Computation
	Format of Fields
	COMPUTE Statement
	Statements MOVE and COMPUTE
	Statements ADD, SUBTRACT, MULTIPLY and DIVIDE
	COMPRESS Statement
	Mathematical Functions

	System Variables and System Functions
	System Variables
	System Functions

	Stack
	Stack Processing
	Placing Data in the Stack
	STACK Parameter
	STACK Statement
	FETCH and RUN Statements

	Clearing the Stack

	Processing of Date Information
	Edit Masks for Date Fields and Date System Variables
	Default Edit Mask for Date - The DTFORM Parameter
	Date Format for Alphanumeric Representation - The DF Parameter
	Date Format for Output - The DFOUT Parameter
	Date Format for Stack - The DFSTACK Parameter
	Year Sliding Window - The YSLW Parameter
	Combinations of DFSTACK and YSLW
	Date Format for Default Page Title - The DFTITLE Parameter

